Benha University Faculty of Engineering at Shoubra

Electrical Engineering and Control (EEC) Department, EEC380: Industrial Training (1) Summer 2020

EEC380: Industrial Training (1) Summer 2020

MATLAB

Industrial Control

Dr. Mohamed Selmy Dr. Islam Mohamed

Day 10, EEC380: -Industrial Training (1)

Introduction to Functions in MATLAB

- Functions are M-files that can accept input arguments and return output arguments.
- The name of the M-file and function should be the same, <u>do not</u> use existing names, e.g., plot, sqrt, sin, etc.
- Functions operate on variables within their own workspace (local variables).

Syntax

Example (1):

Write a <u>function</u> using MATLAB to find the sum of numbers between two numbers K and L.

Example (1):

Write a <u>function</u> using MATLAB to find the sum of numbers between two numbers K and L.

Example (1):

Write a <u>function</u> using MATLAB to find the sum of numbers between two numbers K and L.

Example (2):

Write a <u>function</u> called **tri_area** that returns the area of a triangle with base **b** and height **h**, where **b** and **h** are input arguments.

	ſ.	tri_a	rea.m 🗙 🕂
1		E	function area=tri_area(b,h)
2			
3	—		area=0.5*b*h;
4			
5	_		end

Command Window				
	<pre>>> area = tri_area(5,4)</pre>			
	area =			
	10			

Example (3):

Write a <u>function</u> called matrix_corners that takes a matrix as an input and returns four outputs which are the four corners of the matrix (top_left, top_right, bottom_left, and bottom_right).

```
matrix_corners.m 💥 🕂
     [function [top left, top right, bottom left, bottom right] = matrix corners(A)
1
2
       [n,m]=size(A);
3 -
4
5 -
      top left=A(1,1);
      top right=A(1,m);
6 -
      bottom left=A(n,1);
7 -
      bottom right=A(n,m);
8 -
                             Command Window
9
                                >> a=[2 4; 6 9];
.0 -
       end
                                >> [top_left, top_right, bottom_left, bottom_right] = matrix_corners(a)
                                top left =
                                                  top right = bottom left =
                                                                                          bottom right =
                                     2
                                                                         6
                                                        4
                                                                                               9
```

Example (3):

Write a <u>function</u> called matrix_corners that takes a matrix as an input and returns four outputs which are the four corners of the matrix (top_left, top_right, bottom_left, and bottom_right).

Activity(1):

Write a <u>function</u> called taxi_fare that computes the fare of a taxi ride. The function takes two inputs: distance in km (d) and the amount of wait time in minutes (t). The fare is calculated like this:

- the first km is \$5
- every additional km is \$2
- and every minute of waiting is \$0.25.

Activity(1):

- the first km is \$5
- every additional km is \$2
- and every minute of waiting is \$0.25.

Command Window				
	>> fare = taxi_fare(3.5,2.25)			
	fare =			
	11.7500			

End of Lecture

Thank you for attention! Any questions?

Dr. Mohamed Selmy Dr. Islam Mohamed